ACID-CATALYSED HYDROLYSIS OF N-SULPHONYL SULPHILIMINES—II

I. KAPOVITS,* F. RUFF, J. GULYÁS and Á. KUCSMAN* Institute of Organic Chemistry, L.Eötvös University, Budapest, Hungary

(Received in UK 26 January 1976; Accepted for publication 17 February 1976)

Abstract—The basicity and the acid-catalysed hydrolysis of Ph(R)SNTs and o-XC₆H₄(Me)SNTs sulphilimines have been studied by UV spectrophotometric and kinetic methods, respectively, in aqueous HClO₄ (1-10 M) and 1:1 (v/v) EtOH/H₂O-HClO₄ (0.5-6 M). Depending on the constitution of the substrates, sulphilimine hydrolysis can follow three different courses, according to rate-acidity profiles, Bunnett-Olsen's treatment, activation parameters and product analysis. Most typical for sulphilimines is S_N2 hydrolysis with S^{IV}-N bond cleavage. In this case the reaction starts with the nucleophilic addition of water and is promoted by acid-base catalysis. If a relatively stable carbenium ion can be formed from R group, an S_N1 reaction with S^{IV}-C bond cleavage takes place. Sulphilimine with X = o-CO₂H due to neighbouring-group participation hydrolyses very rapidly via acyloxy-sulphurane and acyloxy-sulphonium ion intermediates with five-memembered ring (S_Ni reaction involving S^{IV}-N bond cleavage).

INTRODUCTION

N-Sulphonyl sulphilimines (R¹R²SNSO₂R³) are generally known to hydrolyse in moderately concentrated solutions of strong acids with S(IV)-N *bond cleavage* yielding sulphoxides (R¹R²SO) and sulphonamides (R³SO₂NH₂). In a previous paper¹ we have concluded that the conjugate acids of XC₆H₄(Me)SNTs and Ph(Me)SNSO₂C₆H₄Y undergo a hydrolysis of S_N2 type in which water molecules act as both nucleophiles and proton-transfer agents. The reactivity of the protonated substrates is enhanced by electron-withdrawing X and Y groups. Later on, an optically active sulphilimine with X = o-CO₂H has been observed to hydrolyse with the retention of configuration suggesting that sulphoxide formation assisted anchimerically by o-CO₂H group proceeds via a cyclic acyloxysulphonium ion intermediate (double inversion).²

PhCH₂OH and PhSO₂NHSCH₂COOH were earlier^{3,4} detected among the products of hydrolysis of (PhCH₂)₂SNTs and HO₂CCH₂('Bu)SNSO₂Ph, respectively, indicating that the given sulphilimines hydrolyse by a S(IV)–C bond cleavage. On the other hand, R¹R²SNTs (R¹, R² = aryl or n-alkyl) dissolved in conc sulphuric acid is deacylated with the cleavage of the S(VI)–N bond.⁵

Since acid-catalysed sulphilimine hydrolysis may follow different courses, we have studied more extensively the dependence of rate on structure and acidity in order to obtain further information about its mechanisms. Two series of XC₆H₄(R)SNTs were investigated: S-phenyl-Ntosyl-sulphilimines (X = H) with different S-alkyl groups, R = Me (1a), Et (1b), Pr (1c), 'Pr (1d), 'Bu (1e), PhCH₂ (1f), and S-methyl-N-tosyl-sulphilimines (R = Me) with different S-aryl groups, X = o-CO₂H (2a), o-CO₂Me (2b), o-CH₂CO₂H (2c), o-CH₂CO₂Me (2d), o-Cl (2e), o-OMe (2f), m-CO₂H (2g), m-CO₂Me (2h), p-CO₂H (2i), p-CO₂Me (2j).

RESULTS AND DISCUSSION

In the solutions of mineral acids N-sulphonyl sulphilimines as moderately strong bases⁶ suffer equilibrium protonation and the conjugate acids undergo a slow hydrolysis reaction.

$$R^{1}R^{2}\ddot{S} = \ddot{N}SO_{2}R^{3} + H^{+} \underset{\kappa_{*}}{\longrightarrow} [R^{1}R^{2}\ddot{S} = \dot{N}HSO_{2}R^{3} \longleftrightarrow$$
$$R^{1}R^{2}\dot{\tilde{S}} = \ddot{N}HSO_{2}R^{3}] \xrightarrow{H_{2}O} Hydrolysis \text{ products.} (1)$$

For sulphilimine hydrolysis, eqn (1) involves the pseudounimolecular rate-law (2) where k_{*} and $[S]_{*t}$ represent the rate constant and the stoichiometric concentration of sulphilimine, respectively:

$$rate = \mathbf{k}_{\phi} [\mathbf{S}]_{\mathrm{st}}.$$
 (2)

The dependence of rate on acidity, temperature and substrate indicates how water participates in the ratedetermining step, thus providing evidence for the different courses of sulphilimine hydrolysis.

Kinetic measurements were carried out at $25-60^{\circ}$ in moderately concentrated (1-10 M) aqueous HClO₄ (solvent A) or in (0.5-6 M) 1:1 (v/v) EtOH/H₂O-HClO₄ (solvent B). Only solvent B was used when substrates and/or products were insoluble or too reactive in aqueous acid.

Rate-acidity profiles. As it was expected, the hydrolysis of XC₆H₄(R)SNTs proceeded according to eqn (2). The k_{μ} values determined in solvents A and/or B of different acidities are listed in Table 1 (Table 4, too). For all these sulphilimines the dependence of k_{*} values on acidity was found to fit into one of three basic categories as shown in Fig. 1. Type A is characterized by a max at 3.0-3.2 M and it is typical for Ph(R)SNTs with R = n-alkyl (1a-c) and XC₆H₄(Me)SNTs with $X = o - CO_2Me$ and o-CH₂CO₂H (**2b-c**). Type B is similar to a sigmoid curve and it is characteristic for the hydrolysis of Ph(R)SNTs with R = Pr, 'Bu and CH_2Ph (1d-f). Type C found for Smethyl-S-(2-carboxyphenyl) derivative (2a) resembles type B except that a decrease in rate occurs at higher at higher acidity (>4 M). The data reported for 1a and 1d show that the shapes of the rate-acidity profiles are independent of the solvent used (HClO₄ in water or in water-ethanol).

The diversity of rate-acidity dependences indicates that the mechanisms of hydrolysis is not the same for all sulphilimines. The rate profiles A and B, similar to those observed for primary alkyl and t-butyl acetates,⁷ respectively, seem to be correlated with hydrolysis reactions of S_N2 and S_N1 types (cf. the A-2 hydrolysis of carboxamides, too⁸).

The treatment of rate data in a more quantitative manner may give a stronger evidence for the mechanisms suggested by different rate profiles. Since the conjugate acids of sulphilimines are involved in the hydrolysis

Table 1. Hydrolysis rates for XC₆H₄(R)SNTs in aqueous HCiO₄ (solvent A) and in 1:1 (v/v) EtOH/H₂O-HCiO₄ (solvent B)

Ia; X=H, R=Me Solvent B ^(a) ; t=50°		Ib; X=H, R=Bt Solvent A; t=50 ⁰		Ic; I=H, R=Pr Solvent A; t=50 ⁰		Id; X=H, R= ¹ Pr Solvent A; t=50°		Id; X=H, R= ¹ Pr Solvent B; t=50°	
[нс10 ⁴] м	10 ⁵ ky (sec ⁻¹)	[HC104]	10 ⁵ k _y (sec ⁻¹)	[HC104] M	10 ⁶ k _y (sec ⁻¹)	[HC104] M	10 ⁵ ky (sec ⁻¹)	[нс10 ₄] ш	10 ⁵ k _y (sec ⁻¹)
0,52	0.80	1,58	5,08	1.27	4.61	2.89	0,57	1,60	0.11
1,01	1.55	1.92	6.39	1.58	5.49	3.94	1.99	2.01	0.22
1.53	2.43	2.70	8,51	2.32	6.16	5.06	4.76	2.54	0.51
2.04	2.90	3.44	9.45	3.20	7.65	6,11	5.81	3.14	0,98
2.55	3.14	3,77	9.08	3.77	7,50	7.10	7.17	3,59	1.91
2.95	3.28	4.36	7.62	4.36	6.57	7.98	8.19	4.05	3.21
3.42	2.90	4.75	6.19	4.74	5.60	8.84	8.81	4.56	4.22
3.97	1.68	5.23	4.19			9.91	10.7	5.19	4.94
4.50	1.20							5.55	5.51

Ie; I=H, R="Bu Solvent B; t=20 ⁰		II; I=H, R=CH ₂ Ph Solvent B; t=25 ⁰		IIa; X= <u>0</u> -CO ₂ H, R=Me Solvent B; t=25 ⁰		IIb; I= <u>o</u> -CO ₂ Me, R=Me Solvent B; t=60 ⁰		IIo; X=o-CH ₂ CO ₂ H, R=Me Solvent B; t=50 ⁰	
[HC104] M	10 ⁵ k _y (mec ⁻¹)	[HC104] M	10 ⁵ k _y (sec ⁻¹)	[HC10 ₄] M	10 ⁵ k _y (mec ⁻¹)	[HC104] M	10 ⁵ k _ý (sec ⁻¹)	[HC104] M	10 ⁵ k _ý (sec ⁻¹)
2.93	1.69	3.09	1.82	1.00	0.70	1.10	0,59	1.03	0.46
3.44	2.94	3.57	3.74	1.55	1.80	1.56	0.94	1.56	0.91
4.07	5.89	3.96	6,78	2,03	4.44	2.07	1.28	2.03	1.32
4.49	13.0	4.53	12.8	2.27	5.85	2.64	1.46	2.63	1.61
4.78	18.3	4.80	15.9	2.58	10.4	3.14	1.67	3.05	1.77
5.23	36.9	5.10	20,1	3.10	18,6	3.55	1.62	3.49	1.64
5.45	74.0	5.31	22.8	3,52	26.4	4.04	1.18	4.03	1.33
		5.47	25.3	4.00	30.1	4.52	0.70	4.47	0.69
				4.50	28.4	5.12	0.37	4.95	0.46
				5.08	22.7				
				5 .62	17.2				

 ${}^{(a)}{\bf k}_\psi$ data measured in solvent A were published in a previous paper. l

Fig. 1. The dependency of the rate on acidity for the hydrolysis of XC₆H₄(R)SNTs in 1:1 (v/v) EtOH/H₂O-HClO₄ solutions; & for Ph(Me)SNTs (1a; 50°); & for Ph('Pr)SNTs (1d: 50°); & for o-CO₂H₋C₆H₄(Me)SNTs (2a; 25°).

reaction, the rates can also be expressed as a function of protonated substrate concentration (3).

$$rate = k_{\psi} [S]_{st} = k_{p} [SH^{+}]$$
(3)

$$k_{p} = k_{\phi} (h_{X} + K_{SH+})/h_{X}.$$
 (4)

Rate coefficient k_p is correlated with the experimental rate constant (k_{ϕ}) by eqn (4) where h_X symbolizes the antilogarithm of $-H_X$ valid for the given sulphilimine base, and K_{SH} represents the thermodynamic acidity constant of the conjugate acid. These k_p values and their

dependence on solvent acidity will be taken into account when the relative reactivities of the protonated substrates and the role of water molecules in the rate-determining step are discussed. In order to evaluate k_p coefficients, pK_{SH^+} values were determined.

Basicity and acidity functions. For the determination of pK_{SH} constants of sulphilimines log $[SH^*]/[S] = \log I$ values were measured by UV spectrophotometric method. Using these values, the acidity constants were calculated by Bunnett-Olsen's l.f.e.r. method⁹ (5 and 6) and by the acidity function (a.f.) method⁷ (7).

$$H_{X} + \log c_{H^{*}} = (1 - \Phi_{c})(H_{0} + \log c_{H^{*}})$$
(5)

$$\log I + H_0 = \Phi_e(H_0 + \log c_{H^*}) + pK_{SH^*}$$
(6)

$$\log \mathbf{I} + m \mathbf{H}_0 = \mathbf{p} \mathbf{K}_{\mathbf{SH}^*}.$$
 (7)

Measurements for **1a-d** were carried out in solvent A at 25°. Φ_e , pK_{SH}, and *m* data are collected in Table 2. (H₀ values were taken from lit.^{10,11}). The same data for compounds **1a**, **d**, **f** and **2b-f** were determined in solvent B (Table 2; calculations were based on H₀ values reported for the same solvent¹²). The pK_{SH} data obtained by l.f.e.r. and a.f. methods agree well within the limits of experimental error. The Φ_e and pK_{SH} values measured by l.f.e.r. method were used for calculating H_x and k_p (cf. eqns 5 and 4) required for the quantitative treatment of rate data of sulphilimine hydrolysis (see later).

Since Ph('Bu)SNTs (1e) and o-CO₂H-C₆H₄(Me)SNTs (2a) are hydrolyzing rapidly even at 25° the pK_{SH}constants for these compounds cannot be determined by the above method. However, using pK_{SH} data of 1a, 1d and 1f, and the σ^* values of Me, 'Pr, CH₂Ph and 'Bu groups,¹³ an approximate pK_{SH} value of -2.16 can be calculated for 1e from the Taft-equation (Δ pK_{SH} = $\rho^*\Delta\sigma^*$ with $\rho^* = 1.63$). The average of Φ_e parameters of 1a, 1d and 1f (-0.137) was used for 1e. In the case of 2a, the pK_{SH} value measured for the *o*-methoxy-carbonyl derivate (2b) was attributed to the *o*-carboxy derivative.

[†]The investigation of sulphilimine hydrolysis in the lower acidity region as well as the interpretation of results are now in progress and will be the subject of a next paper. Both Φ_e and *m* parameters $(m \sim 1 - \Phi)$ listed in Table 2 indicate that XC₆H₄(R)SNTs sulphilimines behave nearly as Hammett-bases. Nevertheless, the negative Φ_e values show that the solvation requirements of acid-conjugated sulphilimines are somewhat lower than those of protonated Hammett-bases (cf. the interpretations suggested by Modena and Scorrano¹⁴). This can be attributed to the delocalization of the positive charge in XC₆H₄(R)-

SNHTs having some sulphonium character.

By comparing Φ_e values, it also follows that the behaviour of sulphilimines ($\Phi_e = -0.1$ to -0.2) in acid solutions differs significantly from that of analogous sulphoxides ($\Phi_e = +0.4$ to +0.6)¹⁴; cf. the Φ_e values of -0.26 to -0.29 found for sulphides.¹⁴

Quantitative treatment of rate data. Investigating the role of water molecules in the rate-determining step of sulphilimine hydrolysis we correlated k_p data (cf. eqns 4 and 5) with the acidity of the solvent by using Bunnett-Olsen's treatment¹⁵ proposed for moderately basic substrates (8).

$$\log k_{p} = \Phi_{r}(H_{0} + \log c_{H^{*}}) + \log k_{p}^{0}.$$
 (8)

The Φ_r parameters and log k_p^0 values relating to infinite solutions in solvents A and/or B were calculated and collected in Table 3.

By plotting k_p values determined for 1d-f in solvent B against $H_0 + \log c_{H^*}$ we obtained curves going through max and showing linearity only beyond a relatively high acid concentration (~4.0 M). Consequently, solvation (and activation) parameters were calculated for the range 4.0-5.5 M.⁺ (Using solvent A, 1d was also investigated in a much wider concentration range, but practically the same solvation parameter was obtained in both cases.)

In order to compare directly the solvation requirements of different transition states developing in the hydrolysis of sulphilimines $\Phi_{\mu} = \Phi_r + \Phi_e$ values were also calculated as proposed by Modena and Scorrano¹⁴ (Table 3).

Table 2. Solvation parameters and pK_{SH+} values for XC₆H₄(R)SNTs in aqueous HClO₄ (solvent A) and 1:1 (v/v) EtOH/H₂O-HClO₄ (solvent B) at 25°

	xc6H4(R	()SNTs	Solvent	Wave length	met	nod	E me	method	
	x	R	-	(nm)	Ø.	pK _{SH+} (a)	m	pR _{SH+} (a)	
Ia	К	Ne	A	275	-0.17	-2.14	1.11	-2.18	
Ia	н	Me	в	276	-0.15	-2.64	1.14	-2.66	
Ib	H	Et	A	275	-0.19	-2.23	1.15	-2.27	
Ic	н	Pr	A	281	-0.09	-2.08	1.08	-2.11	
Id	н	¹ Pr	A	281	-0.09	-2.08	1.07	-2.10	
Id	н	¹ Pr	в	278	-0,10	-2.34	1.08	-2.35	
If	н	CH2Ph	в	279	-0.16	-2.96	1.13	-2.99	
IID	<u>o</u> -COOH	Me	В	294	-0.14	-2.83	1.12	-2.86	
IIc	<u>о</u> -сн ₂ соон	Me	в	286	-0,17	-2.65	1.14	-2.67	
IId	<u>o</u> -CH ₂ COOMe	Me	в	286	-0.11	-2.72	1.09	-2.74	
IIe	<u>o</u> -C1	Me	в	294	-0.20	-3.04	1.17	-3.09	
IIf	<u>o</u> ⊙≌e	Me	в	306	-0.20	-2.19	1.12	-2.22	

Table 3.	Solvation parameters for the hydrolysis of $XC_8H_4(R)SNTs$ in aqueous HCIO ₄ (solvent A) and in 1:1 (v/v) EtOH/HCIO ₄ (solvent B)
	EtOH/HClO₄ (solvent B)

	IC6H4(F	Solvent t			105 -0	T			
	I	R		°c	value of parameter	coeff.	concentration range M	(Bec -)] #
Ia ^(a)	н	Xe	A	50	+1.21	0,9998	1,00-5,79	218	+1,04
Ia	Ħ	Xo	В	50	+1.16	0,9990	0.52-4.50	658	+1.01
гь	н	Et	٨	50	+1.23	0.9998	1.58-5.23	61.0	+1.04
Ic	Ħ	Pr	A	50	+1.19	0.9983	1.27-4.74	44.4	+1.10
Iđ	н	¹ Pr	٨	50	-0.08	0.9422	2.89-9.91	4.53	-0.17
Iđ	н	¹ Pr	B	50	-0.15	0.9559	3.59-5.55	1.85	-0.25
Ie	н	^t Bu	В	20	-0.95	0.9892	4.07-5.45	0.07	-1.10
If	H	CH2Ph	В	25	-0.26	0.9968	4.53-5.47	3.88	-0.42
IIa	д-со ⁵ н	Me	В	25	+0.41	0.9967	1.00-5.62	386	+0.27
IГЪ	<u>o</u> -CO ₂ Me	Ne	B	60	+1.05	0.9987	1.10-5.12	341	+0.91
IIc	<u>о</u> -сн ₂ со ² н	Ме	В	50	+0.97	0.9987	1.03-4.95	189	+0.80

(a) k_ψ data measured in solvent A were taken from a previous paper¹

By comparing Φ_r or Φ_{μ} parameters of 1a and 1d measured in solvents A and B it can be seen that they do not depend essentially on the ethanol content of the solvent used.

Activation parameters and relative reactivities. The dependence of rate constants k_{ψ} on temperature (generally 50, 55, 60°) was measured in solvents A and/or B of given acidity. The experimental data fit the Arrhenius equation. The activation parameters ΔH^* and ΔS^* (50°)

evaluated from the equation $k_{*} = (kT/h) \exp(\Delta S^{*}/R) \exp(-\Delta H^{*}/RT)$ are given in Table 4. The reactivities of acid-conjugate sulphilimines can be compared by their relative rates of hydrolysis (k_{rel}) as listed in Table 4.

Product analysis. By polarographic analysis (cf. lit.¹) it was established that XC_6H_4 (Me)SO sulphoxides were quantitatively formed from sulphilimines 1a-c and 2a-j. In the case of 1d-f no sulphoxide was observed and only

Table 4. Activation parameters and relative rates for the hydrolysis of XC₆H₄(R)SNTs in aqueous HClO₄ (solvent A) and in 1:1 (v/v) EtOH/H₂O-HClO₄ (solvent B) at 50°

	IC6H4(R)	SET		(HC10	1 10 ⁵ k	<u>Λ</u> π‡	Λs [‡]	·
	x	R	-Solvent	Ľ	(800-1)	(kcal,mól ⁻¹)	(e.u.)	^K rel
Ia ^(a)	H	Ke	Å	2.00	2.89	19.5	-19.0	1 ^(b)
Ia.	Ħ	Me	в	2.06	2,90	18.9	-22.3	1 ⁽⁰⁾
ID	H	Bt	*	3.44	0.95	18.7	-23.7	0.28())
Ic	H	Pr	A	4.36	0.66	18.4	-25.4	0.20 ^(b)
Id	н	ⁱ Pr	A	7.98	8.19	25.4	+1.3	0.02(b)
Id	H	¹ Pr	В	4.03	3.24	25.0	-2.0	1.42(0)
Ie	н	^t Bu	В	4.03	152 ^(d)	19.9	-10.0	65.8 ^(0,d)
lf	н	CH ₂ Ph	В	4.03	127 ^(d)	23.0	-0.73	91,1 ^(c,d)
IIa	o-co2H	Жe	в	2.06	67.4	19.9	-11.6	38 ^(c)
IID	<u>o</u> -C0_ ¥ e	Me	в	2.06	0.33	17.4	-28.9	0.27 ^(c)
IIc	2-CH2CO2H	Мо	В	2.06	1.31	17.4	-27.2	0.45 ^(c)
IId	Q-CH2CO2Me	Хe	B	2.06	1.32	17.8	-25.0	0.57 ^(c)
IIe	<u>_</u> -C1 _	Me	В	2,06	2.96	19.0	-20.7	2.22 ^(c)
IIf	<u>o</u> ~0 Xe	Me	В	2.06	1.76	18.5	-23.2	0.21(0)
lIg	<u>_</u> −C0 ₂ H	Мо	В	2,06	5.91	18.8	-19.9	2.04(*)
IIh	<u>m</u> -C0 ₂ Me	Ма	В	2.06	6.39	18.2	-21.5	2.20(0)
IIi	<u>p</u> -C0 ₂ H	Ме	в	2.06	5.01	18.6	-20.6	1.73(0)
IIJ	<u>p-C02</u> Me	Мө	в	2.06	5.69	16.6	-26.6	1.96 ^(@)

(a) Data were taken from a previous paper.1

(b) Calculated from data determined in solvent A and extrapolated to infinite dilution by using equation $k_{rel} = k_p^0$ (substrate)/ k_p^0 (Ia)

(c) Calculated from data determined in solvent B of given acidity by using equation $k_{rel} = k_p (substrate)/k_p$ (Ia). For Ia $k_p = 79.4 \pm 10^{-5}$ and 2.64 $\pm 10^{-5}$ sec⁻¹ values determined in HClO₄ solutions of 2.06 M and 4.03 M, respectively, were taken into account.

(d) k_p (substrate) value at 50° was calculated from k_{ψ} value measured at 20° (Ie) or 25° (If) and extrapolated by the Arrhenius equation.

(e) Because of failure to determine pE_{SH+} by UV method, k_{rel} = k_p(substrate)/ k_ψ (Ia) values are given. TsNH₂, PhSSPh and PhSSO₂Ph were determined in the chloroform extract of the mixture by IR spectroscopic method. 'BuOH and PhCH₂OH formed from 1e and 1f, respectively, were detected by NMR spectroscopic method.

Mechanisms. The acid-catalyzed hydrolysis of **1a-c** and **2b-c** exhibiting a rate-acidity profile of type A can be characterised by a Φ , value within the range from + 0.97 to + 1.23 (Table 3). This corresponds to a high degree of participation of water molecules in the reaction. According to Bunnett-Olsen's classification,¹⁵ in this case water acts not only as a nucleophile but also as a proton-transfer agent in the rate-determining step. Thus, the conjugate acids of these compounds seems to follow course A when undergoing hydrolysis in moderately strong acidic solutions. The reaction of the S_N2 type starts with the nucleophilic addition of water on sulphur atom producing a sulphurane intermediate,¹⁶ and it is promoted by acid-base catalysis.

For the hydrolysis of 1d-f having a rate-acidity profile of type B, negative Φ , values within the range from -0.95to -0.08 were observed in solutions of relatively high (4-5.5 M) acid concentration (Table 3). According to Bunnett-Olsen's classification¹⁵ it may be assumed that water does not take part in the rate-determining step. Consequently, the hydrolysis of the acid conjugates of Ph(R)SNTs with R = 'Pr, 'Bu and CH₂Ph groups presumably follows course B (S_N1 mechanism) which is promoted by the relative stability of R⁺ carbenium ion.

The negative Φ_r values for 1d-f (from -1.10 to -0.17) are obviously due to the rather low solvation requirements of the carbenium centre developing in the transition state (cf. lit.¹⁴).

 ΔH^{*} and ΔS^{*} data shown in Table 4 also indicate that a change in mechanism (S_N1 instead of S_N2) occurs if the R group in Ph(R)S¹HTs is bulky and can split as a relatively stable carbenium ion. As expected, the order of reactivities in the S_N1 reaction is 'Pr < CH₂Ph, 'Bu.

 Φ_{μ} values for **ia-c** and **2b-c** (from +0.80 to +1.10) indicate that in the transition state an oxonium centre with high solvation requirements is developed by the nucleophilic attack of water on a sulphonium centre having relatively low solvation requirements (cf. lit.¹⁴).

The activation parameters of la-c and 2b-j (Table 4) indicate undoubtedly that sulphilimines Ph(R)SNTs with R = Me, Et and Pr, and all compounds of $XC_6H_4(Me)SNTs$ type (except 2a with $X = o - CO_2H$) undergo a bimolecular hydrolysis in acid solutions. The reactivity of the conjugate acids of 1a-c decreases with increasing steric and + I effects of R substituents. Relative rates observed for 2e and 2f may be interpreted (cf. lit.¹) semiquantitatively by different polar and steric effects¹³ of X = o-Cl and o-MeO groups. (The positive ρ^* value is approximately in the range 1.6-1.9.) Compound 2b with electron-withdrawing $X = o - CO_2 Me$ group, however, exhibits an unusual slow hydrolysis rate obviously due to a considerable steric hindrance (cf. 2g-j). Furthermore, the proximity of the carbonyl-oxygen of o-CO₂Me group to the positively charged S atom may also inhibit the nucleophilic attack of water molecules.

Course A is also supported by the quantitative determination of sulphoxides formed from **1a-c** and **2b-j**.

Intermediates R^+ and PhSNHTs formed by the unimolecular cleavage of the protonated substrate are unstable and undergo further hydrolysis in the solvent. R^- reacts with water yielding alcohol. PhSNHTs hydrolyses to give TsNH₂ and PhSOH¹⁷ from which PhSSPh and PhSO₂SPh are formed.^{18,19} The S_NI mechanism proposed for the hydrolysis of **1d-f** has also been confirmed by the identification of the products mentioned. Although PhSSPh and PhSSO₂Ph may also be formed from Ph('Bu)SO by acid-catalysed hydrolysis,¹⁹ the reaction rates invariably show that the primary hydrolysis product of **1e** cannot be a sulphoxide.

The rate-acidity profile of type C and $\Phi_r = +0.41$ observed for o-CO₂H-C₆H₄(Me)SNTs (2a) may be explained by a reaction scheme given as *course* C similar to that reported by Bohman and Allenmark² (S_Ni and S_N2 reactions promoted by acid-base catalysis). In the starting steps water acts as a base-catalyst and not as a nucleophile.

The medium high positive Φ_{\star} value (+0.27) can be interpreted by the medium solvation requirements of the oxonium-carbenium moiety evolving in the transition state; cf. lit.¹⁴

The extremely high rate measured for the hydrolysis of 2a can be well explained by the neighbouring-group

participation of ortho carboxy-group. The value of ΔS^{*} (-11.6 e.u.) can be correlated with an unimolecular reaction involving ring closure. On the other hand, the rate data found for 2c show that o-CH₂CO₂H group has no significant rate-accelerating effect on sulphilimine hydrolysis, suggesting that the reaction yielding a cyclic acyloxy-sulphurane with a six membered ring is not favourable.

On the basis of all this, it has been concluded that the hydrolysis of XC₈H₄(R)SNTs sulphilimines in moderately concentrated acidic solutions may follow different courses depending on what R and X groups they have. S_N2, S_N1 and S_Ni + S_N2 displacements established for the acid-catalyzed reactions of analogous XC₆H₄(R)SO sulphoxides (cf. lit.^{14,20}).

EXPERIMENTAL

Materials. The purity of compounds used in the kinetic measurements were checked by analysis and/or spectroscopic methods. Physical data (m.p., IR) characteristic for $XC_6H_4(R)SNTs$ sulphilimines are given in Table 5. IR spectra

were recorded on a Zeiss UR-10 instrument in KBr pellets. M.ps were determined by a "Boetius" m.p. apparatus.

S - t - Butyl - S - phenyl - N - p - tolylsulphonyl - sulphilimine (1e). This compound was prepared by the method published earlier²¹ with the modification that TsNClNa $2H_2O$ (13.2 g; 0.05 mol) was added in small portions to a cold (0°) soln of t-butylphenyl-sulphide (8.3 g, 0.05 mol) in abs MeOH (200 ml); yield 13 g (80%).

S - Methyl - S - (2 - carboxyphenyl) - N - p - tolylsulphonyl - sulphilimine (2a. This compound was prepared from (2carboxyphenyl) - methyl - sulphide and anhydrous chloramine-T (98% of purity checked by iodometric titration) in abs dioxan by a method similar to that of Bohman *et al.*² Finally powdered TsNClNa·2H₂O was desiccated in vacuum over P₂O, for 6 days at room temp. The reaction was carried out at 20°. The crude product was recrystallized from abs MeOH (60%).

S - Methyl - S - methoxycarbonylphenyl - N - p - tolylsulphonyl sulphilimines (2b, 2h, 2j). The reaction of 2a, 2g and 2i with diazomethane carried out by the usual method gave methyl esters in nearly quantitative yields. The crude products were recrystallized from abs MeOH. (Found: C, 54.8; H, 5.0; N, 3.9; S, 18.0 for ortho-isomer; C, 54.6; H, 4.9; N, 4.0; S, 17.9 for meta-isomer; C, 54.6; H, 5.0; N, 3.8; S, 17.9 for para-isomer. Calc. for $C_{16}H_{17}NO_4S_2$ (351.5): C, 54.7; H, 4.9; N, 4.0; S, 18.3%).

Table 5. Data for XC₆H₄(R)SNTs used in kinetic experiments

IC6H4(R)SNTE								
	X	R	$v_{aa}(so_2) \text{ cm}^{-1}$	√s(S0 ₂) cm ⁻¹	$v_{as}(SNS) \text{ om}^{-1}$	Vs(SNS) om ^{−1}	- т.р. С	Preparation
Ia	н	Хe	128121	114521	93521	747	132	lit. ²²
Ib	H	Bt	1280 ²¹	1141 ²¹	978 ²¹	760	99-100	11t. ²³
Ic	H	Pr	1284 ²¹	1143 ²¹	979 ²¹	760	85-86	11t. ²⁴
Iđ	н	¹ Pr	1284 ²¹	1149 ²¹	950 ²¹	758	116,5-117	11t. ²¹
Ie	н	^t Bu	1298	1147	961	760	107-108 (decomp.)	exp.part
If	H	CH ₂ Ph	1281	1139	991, 968	747, 754	136-137	11t. ²⁵
IIa	<u>о</u> -Соон	Xe	1279	11 39	944	762	125,5-126	exp.part
IIb	<u>o</u> -COOMe	Me	1280	1142	946	770, 762	164,5~165	exp.part
IIc	2-CH2COOH	Me	1289	1143	948	772	168,5-170	exp.part
IId	<u>о</u> -Сн ₂ сооже	Мө	1280	1141	941	762	138,5-139,5	exp.part
IIe	<u>o</u> -01	Me	1294, 1280	1142	949, 940	770, 760	145-145,5	exp.part
IIf	<u>o</u> -0 Me	Mie	1293, 1 280	1141	938 ²³	770, 751	100-101	11t. ²²
IIg	<u>т</u> -Соон	Ke	1271	1141	950 ²³	756	177	lit. ²⁶
IIh	<u>m</u> -COOMe	Me	1290	1150	960	762	145-145,5	exp.part
IIi	<u>p</u> -COOH	Me	1284	1141	961	751	192-193	lit. ²⁷
IIj	<u>р</u> -СООМе	No	1287	1141	980	760	167,5-168	exp.pert

S - Methyl - S - (2 - methoxycarbonylmethyl - phenyl) - N - ptolylsulphonyl - sulphilimine (2d). 2 - Methylthio-phenyl acetic acid²⁹ (2.73 g, 15 mmol) suspended in abs MeOH (25 ml) was treated in the usual way with diazomethane dissolved in ether. The solvent was removed under reduced pressure. The oily residue was dissolved in a mixture of abs dioxan (40 ml) and AcOH (1 ml) then TsNClNa·2H₂O (3.95 g, 15 mmol) was added. The mixture was stirred for 8 hr at room temp. The solvent was removed under reduced pressure and the residue triturated with cold 5% NaOH aq (20 ml). The crystals were filtered, washed with cold water, and crystallized from MeOH (25 ml) without drying; yield 3.6 g (60%). (Found: C, 56.0: H, 5.3; N, 3.8; S, 17.6 Calc. for $C_{17}H_{19}NO_4S_2$ (365.4): C, 55.9; H, 5.2; N, 3.8; S, 17.6%).

S - Methyl - S - (2 - carboxymethyl - phenyl) - N - p tolylsulphonyl - sulphilimine (2c). NaOH (0.24 g, 6 mmol) dissolved in water (5 ml) was added to 2d (1.1 g, 3 mmol) suspended in MeOH (10 ml). The mixture was stirred for 1 hr at room temp.; then the soln was concentrated to a small volume by evaporation and diluted with water (3 ml). After acidifying by 2N H₂SO₄ aq, the ppt was filtered, washed with cold water and desiccated in vacuum over P₂O₅; yield 0.97 g (100%). (Found: C, 54.6; H, 5.0; N, 4.0; S, 18.3. Calc. for C₁₆H₁₇NO₄S₂ (351.4): C, 54.7; H, 4.9; N, 4.0; S, 18.3%).

S - Methyl - S - (2 - chlorophenyl) - N - p - tolylsulphonyl - sulphilimine (2e). This compound was prepared from (2-chloro phenyl) - methyl - sulphide and chloramine-T by the general method published earlier.²⁴ The crude product was recrystallized from EtOH; yield 52%. (Found: C, 51.4; H, 4.4; Cl, 11.0; N, 4.2; S, 19.4. Calc. for $C_{14}H_{14}CINO_2S_2$ (327.9): C, 51.3; H, 4.3; Cl, 10.8; N, 4.3; S, 19.6%).

 $pK_{\rm SH}$ measurements. $pK_{\rm SH}$ data of sulphilimines listed in Table 2 were determined in aqueous (1-70%) HClO₄ and/or in 1:1 (v/v) EtOH/H₃O-HClO₄ (1-35% HClO₄) by UV spectrophotometric method. The stock solutions of sulphilimines (10⁻⁴-4×10⁻⁴ M) were made immediately before running the spectra. Absorptions at the given wave lengths were recorded at 25° on a Beckman Model DU instrument.

The sigmoid plots of absorbances (A) against acidity indicated that the absorbances of sulphilimine bases (A_B) were not affected by the acidity of the solvent, whereas those of the conjugate acids (A_{BH}⁻) were linear functions of H₀ (A_{BH}⁻ = a + bH₀); cf. lit.^{30,31} Taking this into consideration, pK_{SH}⁻ values were computed (least squares method) by using the equation log I = log (A - A_B)/A_{BH}⁻ -A), eqns (6) and (7).

Kinetics. Hydrólysis rates were measured by the polarographic method used in our earlier experiments.¹ The measurements were accurate to within $\pm 5\% \Phi_r$, k_p° , ΔH^{-} and ΔS^{-} values were computed by iteration (least squares method).

Product analysis (hydrolysis of 1d-f). Sulphilimine (10 mmol) was stirred in 2 N (for 1e, 1f) or in 5.2 N (for 1d) HClO₄ aq (50 ml) up to 100% conversion of the substrate (about 60 hr). Sulphilimine dissolved slowly, later the clear soln became turbid from products formed. After complete hydrolysis the concentration of HClO₄ was diminished to 0.1 N by adding 2 N NaOH aq to the mixture. Products were extracted by chloroform (3×30 ml). From the chloroform extract (dried over MgSO₄ sicc) the solvent was removed under reduced pressure. The products in the residue were determined by both NMR and IR spectroscopic methods.

NMR spectroscopic method. The crude products obtained by the hydrolysis of 1d-f were dissolved in CDCl₃ and NMR spectra were taken on a ZKR 60 apparatus (Zeiss, Jena). NMR spectra of $C_0H_3(R)SNTs$, $C_0H_4(R)SO$ and ROH with R = 'Pr, 'Bu and $C_0H_3CH_2$ were also recorded. The signals suitable for the identification of products are given in Table 6.

Data in Table 6 show that only 'BuOH (from 1e) and $C_{4}H_{4}CH_{2}OH$ (from 1f) and no sulfoxide can be detected. 'PrOH as a volatile hydrolysis product of 1d cannot be identified by this method.

IR spectroscopic method. The crude products obtained by the hydrolysis of 1d-1 were treated with a solvent-system 10:1 (v/v)hexane-ether. The insoluble product was identified as ptoluenesulphonamide by its IR spectrum. After evaporation the soluble products were dissolved in chloroform and IR spectra were taken. By this method PhSSPh and PhSO₂SPh were also

Table 6. Characteristic signals for $C_6H_5(R)SNTs$, $C_6H_5(R)SO$ and $ROH^{(n)}$

Compound	$R = C(CH_3)_3$	R = C6H5CH2	$R = CH(CH_3)_2$
	(сн ₃)	/(сн ₂)	d∕(CH)
C ₆ H ₅ (R)SNTS	1.25	4.24	3.21
C6H5(R) SO	1.19	4.07	2.85
ROH	1.28	4.61	3.99
Product	1.27	4.64	-

(a) Internal standard TMS

identified as hydrolysis products of 1d-f. Characteristic frequencies are: for PhSSPH $\nu(C_A, C_{A_1})$: 1579, 1479, 1440 cm⁻¹; $\delta(C_A, H)$: 1078, 1023 cm⁻¹; $\gamma(C_A, C_{A_1})$: 693 cm⁻¹; for PhSO₂SPh $\nu(C_A, C_{A_1})$: 1582, 1478, 1448 cm⁻¹; $\nu(SO_2)$: 1329, 1313, 1147 cm⁻¹; $\delta(C_A, H)$: 1078, 1023 cm⁻¹; $\gamma(C_A, C_{A_1})$: 690 cm⁻¹; $\delta(SO_2)$: 595, 538 cm⁻¹.

PhSSPh/PhSO₂SPh product-distribution was determined on the basis of significant difference in the intensities of bands at 1078 and 1023 cm⁻¹. The amount of PhSO₂SPh could also be determined by measuring the intensity of the band at 1147 cm⁻¹. Absorption coefficients are: for PhSSPh $a_{1021} = 4.54 \times 10^{-3}$; $a_{1078} = 5.78 \times 10^{-4}$; $a_{1147} = 0$; for PhSO₂SPh $a_{1021} = 1.96 \times 10^{-3}$; $a_{1078} = 8.02 \times 10^{-3}$; $a_{1147} = 3.06 \times 10^{-2}$ (solvent: CHCl₃; concentration: 1 g/l; cell length: 0.1 mm).

In the products of the hydrolysis of 1 mmol of 1d, 1e and 1f 0.96, 0.94 and 0.88 mmol of $T_{\rm SNH_2}$, 0.21, 0.09 and 0.20 mmol of PhSSPh and 0.21, 0.16 and 0.12 mmol of PhSO₂SPh were measured.

Acknowledgements—The authors thank Dr. H. Medzihradszky-Schweiger and Mrs. S. Kutassy for analyses carried out in the Microanalytical Laboratory of this Institute, Mrs. K. Ösapay-Balogh for the valuable help in computations, Miss Zs. Petress and Mr. L. Kovács of this laboratory for the technical assistance.

REFERENCES

- I. Kapovits, F. Ruff and A. Kucsman, Tetrahedron 28, 4405 (1972).
- ²O. Bohman and S. Allenmark, *Tetrahedron Letters* 405 (1973); Chemica Scripta 4, 202 (1973).
- ³P. A. Briscoe, Thesis, University of Leeds (1953); Organic Sulfur Compounds (Edited by N. Kharasch), Vol 1. Chap. 29, pp. 340-1. Pergamon Press, Oxford (1961).
- ⁴ A. Tananger, Arkiv för Kemi, Min. Geol. 24A, 1 (1947).
- ¹N. Furukawa, T. Omata, T. Yoshimura, T. Aida and S. Oae, *Tetrahedron Letters* 1619 (1972).
- ⁶I. Kapovits, F. Ruff and A. Kucsman, *Tetrahedron* 28, 4413 (1972).
- ⁷K. Yates and R. A. McClelland, J. Am. Chem. Soc. 89, 2686 (1967).
- *J. T. Edward, H. P. Hutchinson and S. C. R. Meacock, J. Chem. Soc. 2520 (1955); J. T. Edward and S. C. R. Meacock, *Ibid.* 2000. 2007 (1957).
- ⁹J. F. Bunnett and F. P. Olsen, Can. J. Chem. 44, 1899 (1966).
- ¹⁰M. Paul and F. A. Long, Chem. Rev. 57, 1 (1957).
- 11. M. J. Jorgenson and D. R. Harter, J. Am. Chem. Soc. 86, 5408 (1963).
- ¹²K. Rotschein, J. Socha, P. Vetešnik and M. Večeřa, Coll. Czech. Chem. Commun. 35, 3128 (1970).
- ¹³R. W. Taft, Steric Effects in Organic Chemistry (Edited by M. S. Newman), Chap. 13. Wiley, New York (1956).
- G. Modena, G. Scorrano and U. Tonellato, Euchem Conference on Proton Transfer Equilibria and Reactions in Non-ideal Systems, Astr 19. 1-5 Sept. Padova, Italy (1975); G. Scorrano, Accounts Chem. Res. 6, 132 (1973); A. Levi, G. Modena and G. Scorrano, J. Am. Chem. Soc. 96, 6585 (1974); and refs therein.
- ¹⁵J. F. Bunnett and F. P. Olsen, Can. J. Chem. 44, 1917 (1966)
- ¹⁶I. Kapovits and A. Kálmán, Chem. Comm. 649 (1971); F. Ruff and Á. Kucsman, J. Chem. Soc. Perkin II, 509 (1975); and refs therein.

- ¹⁷S. Oae, K. Tsujihara and N. Furukawa, *Tetrahedron Letters* 2663 (1970).
- ¹⁸N. Kharasch, Organic Sulfur Compounds (Edited by N. Kharasch), Vol. 1, Chap. 32, p. 393. Pergamon Press, New York (1961).
- ¹⁹G. Modena, U. Quintily and G. Scorrano, J. Am. Chem. Soc. 94, 202 (1972).
- ²⁰T. Numata, K. Sakai, M. Kise, N. Kunieda and S. Oae, Int. J. Sulfur Chem. A 1, 1 (1971).
- ²¹A. Kucsman, I. Kapovits and F. Ruff, Acta Chim. Acad. Sci. Hung. 54, 153 (1967).
- ²²Á. Kucsman, I. Kapovits and M. Balla, Tetrahedron 18, 75 (1962).
- ²³A. Kucsman, F. Ruff and I. Kapivits, Ibid. 22, 1575 (1966).

- ²⁴D. S. Tarbell and M. A. McCall, J. Am. Chem. Soc. 74, 48 (1952).
- ²⁵K. Tsujihara, N. Furukawa, K. Oae and S. Oae, Bull. Chem. Soc. Japan 42, 2631 (1969).
- ²⁶S. G. Clarke, J. Kenyon and H. Phillips, J. Chem. Soc. 3004 (1928).
- ²⁷Å. Kucsman, I. Kapovits and B. Tanács, *Tetrahedron* 18, 79 (1962).
- ²⁸I. Kapovits, F. Ruff and Á. Kucsman, Ibid. 28, 4413 (1972).
- ²⁹Á. Kucsman and T. Kremmer, Acta Chim. Acad. Sci. Hung. 34, 75 (1962).
- ³⁰C. D. Johnson, A. R. Katritzky, B. J. Ridgewell, N. Shakir and A. M. White, *Tetrahedron* 21, 1055 (1965).
- ³¹C. C. Greig and C. D. Johnson, J. Am. Chem. Soc. 90, 6453 (1968).